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1. Introduction
Computer numerical control (CNC) milling machines, which sta-

ble and efficient operation can produce huge economic value, are the 
most widely used automatic production equipment in modern manu-
facturing industry. The milling tool is the most critical and vulnerable 
part in the milling process, its wear state affect directly the surface 
quality of the machined parts and the normal operation of the machine 
tool [20, 21, 37]. Therefore, it is particularly important to develop an 
accurate tool condition monitoring (TCM) method.

The above-discussed issue has been addressed in the past few years 
by developing two general types of TCM methods, direct TCM meth-
od and indirect TCM method. The direct TCM method is often seldom 
adopted because it is greatly affected by the machining environment, 
such as light, cutting chips, and cutting fluid [49]. In contrast, the 
indirect TCM method employs certain artificial intelligence (AI) clas-
sifier to predict the wear state through collecting sensor signals as-
sociated with the tool wear state [33], such as cutting force [15, 50], 
vibration [6], acoustic emission (AE) [44], and motor current [47], 
sound [19, 46] signals. Recently, with the development of artificial 
intelligence (AI) algorithms, more and more scholars have applied AI 
algorithms in TCM, including support vector machine (SVM) [6,18], 

random forest (RF) [24, 32, 41], decision tree (DT) [3, 26], artificial 
neural network (ANN) [1, 9, 12, 22, 23, 28, 34]. However, while these 
AI methods have yielded encouraging achievements in TCM applica-
tions, achieving good wear state prediction performance using these 
methods relies heavily on large datasets of monitoring signals that are 
associated with all possible tool wear conditions for model training 
[14, 45], which is costly and time-consuming for machining processes 
under different cutting conditions. Although SVMs are suitable for 
model training with small datasets, they are invalid for sample miss-
ing as samples associated with some tool wear conditions are often 
missing due to the complex conditions encountered in the machining 
process.

Therefore, a low-cost and easy-to-implement method is needed 
to solve the problem of sample missing and sample insufficiency. In 
recent years, the numerical simulation technology was promoted by 
the improvement of computer technology, more and more researchers 
have begun to pay attention to this technology [16, 27, 40, 43]. For 
example, Xiang et al. [42] proposed a personalized diagnosis meth-
od of shaft based on numerical simulation, combined with wavelet 
packet transform (WPT) and SVM model to realize the diagnosis of 
different shaft faults. Gao et al. [7] solved the problem of missing 
and insufficient samples of bearing faults by combining finite element 
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simulation (FEM) and Generative adversarial networks (GANs), and 
provided complete training samples for AI models.

The metal cutting process can be understood as a process in which 
the tool and the workpiece move and collide with each other. The ac-
tual machining process can be simulated by establishing models and 
mathematical expressions. At present, there are a lot of commercial 
software (such as Deform, AdvantEdge, Abaqus.) in the market that 
encapsulate the above process in the software to bring convenience to 
users. The rich functions of these softwares provide the potentials to 
simulate physical signal corresponding to tool wear state, which can 
overcome the problem of sample missing and insufficient. Therefore, 
a novel tool wear condition monitoring 
method based on numerical simulation is 
proposed in this paper, and the remainder 
of this paper is organized as follows. Sec-
tion 2 introduces the basic working prin-
ciples of the proposed method, including 
numerical simulation based on Johnson-
Cook (J-C) constitutive model, parameter 
optimization of the J-C model, and the framework of the proposed 
method. Experimental investigations with end milling TCM are giv-
en in Section 3. Section 4 analyzes the performance of the proposed 
method. Finally, conclusions are given in Section 5.

2. Proposed method

2.1. Numerical simulation based on J-C model
The essence of the cutting process is that the workpiece material 

from elastic deformation to the material yield point under the action 
of external forces, which causes the plastic deformation of workpiece 
and finally to the process of fracture. In this process, the tool con-
tact and rub against with the workpiece surface and chips to produce 
wear, cutting force and heat will also be generated between the tool 
and workpiece. In cutting simulation, material constitutive models are 
employed to describe this complex process, and the J-C model is often 
used because it can describe the behavior of high temperature, high 
strain, and high strain rate in the cutting process. The formula of the 
J-C model is as follows [36]:
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where A (MPa) is the initial yield stress, B (MPa) is the strain hard-
ening coefficient, ε is the the plastic strain, n is the stain hardening 
exponent, C is the strain rate sensitivity coefficient, ε’ and ε0’ are the 
plastic strain rate (s−1) and reference plastic strain rate (s−1), respec-
tively, T is the deformation temperature of the workpiece (°C), T0 
is room temperature (20°C), Tmelt is the melting temperature of the 
material (°C), and m is the temperature softening exponent [13]. the 
three individual terms separately enclosed within parentheses on the 
right side of formula (1), respectively, represent the strain strengthen-
ing effect of the material, the relationship between σ and the natural 
logarithm of the relative strain rate, and the exponential relationship 
between σ and temperature. 

Because of the rich material library and the specialized cutting 
module in software DEFORM, it has attracted the attention of many 
researchers to the software. Shao et al. [35] adopted DEFORM to 
study the thermodynamic constitutive equation of Ti-6Al-4V and pre-
dicted the tool wear depth. Klocke et al. [17] utilized DEFORM to in-
verse the constitutive equations and damage criteria of AISI 1045 and 
Inconel 718, and verified the effectiveness of the method by compar-
ing simulation results with experimental results. Thus, the software 
DEFORM is used in this paper to simulate the end milling process and 
obtain the missing wear samples.

2.2. Parameter optimization
The benchmark value of five parameters, A, B, n, C, m, in the J-C 

model with certain workpiece material can be obtained from split 
Hopkinson pressure bar (SHPB) tests and static tensile tests [2,30]. 
For example, the benchmark value of the five parameters are shown 
in Table 1 when the workpiece material is AISI 1045. However, these 
values of model parameters may not conform the practical cutting 
process because of different cutting environment and other various 
factors, so it is necessary to optimize these model parameters [4]. 
Considering the cost and time of experiments, orthogonal experiment 
is adopted to select the best parameter combination.

For the metrics, Kullback-Leibler (KL) [5,8] divergence and co-
sine similarity are used as the evaluation indexes of the orthogonal 
experiment. The KL divergence measures the difference in probability 
distribution of two groups of signal, and the closer the value of KL is 
to 0, the more similar the two groups of signal are. The formula of KL 
divergence is as follows [5]:
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where p(X) and q(Y) represent the probability density of two groups 
of signal, respectively. The cosine similarity evaluates the similarity 
of two groups of signal through calculating their cosine value, and the 
calculation formula is as follows:
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The closer the value of cos(θ) is to 1, the more similar the two 
groups of signal are. In actual engineering, it is generally considered 
that cos(θ) > 0.6 meets the requirements [29].

2.3. Framework of the proposed method
In this paper, a new TCM method based on numerical simulation 

is proposed to compensate missing samples and expand sample size. 
The framework of the proposed method is show in Figure 1, and the 
three steps of the proposed TCM are outlined in detail as follows.

Step 1: Conduct a limited number of milling TCM experi-
ments to obtain measured cutting force signal samples, and 
obtain the best parameter combination of the J-C model un-
der normal wear state of tool .

First, cutting force signal data is obtained in the milling experi-
ments under several selected tool wear conditions by means of a 
three-component dynamometer. Second, the numerical model based 
on the J-C model is built in DEFORM, and the best parameter combi-
nation is selected by the orthogonal experiment with the comparative 
analysis of the simulation signal and the experimental signal under 
the normal tool condition, in which the criteria is minimize KL diver-
gence satisfying the cos(θ) > 0.6. 

Step2: Simulate missing sample and obtain complete wear 
training samples. 

Table 1. Material parameters in J-C model of workpiece material AISI 1045

A (MPa) B (MPa) C n m Troom (°C ) Tmelt (°C )

Value 553.1 600.8 0.0134 0.23 1 20 1460
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Table 2. Feature parameters and the calculation formulas

Domain Feature parameter Formula Remarks
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Missing tool wear categories can be defined from the experimen-
tal results, that is, these categories not occurred in experiments are 
missing tool wear categories. These missing tool wear categories can 
be simulated based on the optimal numerical model above, and the 
corresponding cutting force signal could be obtained. After supple-

menting missing samples, several feature parameters (shown in Table 
2) of time, frequency, and time- frequency domains (wavelet energy 
coefficient) for each sample are extracted to form a feature parameter 
set [7, 25, 37, 48]. Here, the time-frequency domain parameter was 
obtained using the three-layer wavelet packet transform (WPT) with 
the Daubechies 2 (db2) wavelet basis function.

Step 3: Identify tool wear condition through AI classif iers.

The training set consists of simulated samples and measured sam-
ples, and inputs to train certain AI model. The trained AI model can be 
employed to identify unknown wear condition of tools.

3. Experimental investigations

3.1. Description of experiments
The experimental setup for the end milling TCM experiments un-

der various operating conditions is illustrated in Figure 2. The experi-
mental platform was built on a DMTG VDL850A vertical machining 
center as shown in Figure 2(a). The tools used in the experiments were 
uncoated three-flute tungsten steel end milling cutters (Φ 10 mm), and 
the workpiece material was AISI 1045 steel with dimensions of 300 
mm × 100 mm × 80 mm. A three-component dynamometer (Kistler 
9139AA) was mounted between the workpiece and the machine table 
to measure the cutting forces in the form of charges (shown in Figure 
2(b)). The cutting force signal (Axial force, radial force and tangential 
force) was collected by a charge amplifier (Kistler 5073 A4) and a data 
acquisition instrument (Kistler 5697 A1) with a sampling frequency 
of 12 kHz (shown in Figure 2(c)). As shown in Figure 2(d), the flute 
wear of each cutting tool was measured after each machining stage 
using a GP-300C optical microscope, which represented individual 
milling stages. It is noteworthy that we found the influence of the length 
of rake face wear (KB) on the surface roughness of the workpiece after 

Fig. 1. Framework of the proposed TCM method

Fig. 2. Experimental end milling TCM setup [25]: a) vertical machining center, b) end milling experimental platform, c) data acquisition instrument,  
d) tool microscope

a) b)

c) d)
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milling was greater than that of flank wear (VB) and the depth of rake 
face wear (KT) [47]. Therefore, KB was employed as the tool wear 
criterion in the experiments, and the tool wear value after each cutting 
stage was defined as the maximum KB value of the three teeth. Figure 3 
illustrates the progression of tool wear after finishing a single workpiece 
surface 1, 5, and 10 times (i.e., 1, 5, and 10 milling stages).

The experimental measurements employed eight operational con-
ditions comprising random combinations of three operational pa-
rameters: spindle speed, depth of cut, and feed rate. The operational 
parameters employed in the experiments are listed in Table 3. Each 
case began with a new tool under the eight operational conditions and 
ran 10 milling stages, and the largest tool wear value obtained after 
completing those milling stages in all eight conditions was 2.054 mm. 
Therefore, the milling tool wear condition was divided into 7 catego-
ries according to tool wear intervals of 0.3 mm, and the numbers of 
samples observed for all conditions in all categories are listed in Ta-
ble 4. It can be found in Table 4 that samples indicative of individual 

tool wear categories were not always available under all cutting con-
ditions. These represent missing samples.

3.2. Numerical simulation of end milling process
First, simulation modeling was carried out according to the dimen-

sions of workpiece and milling tool in the experiment, then the models 
are imported into DEFORM for processing. Second, the general pre-
processing module of DEFORM was selected in the main interface, 
and the unit standard was set as SI. The workpiece was set as a plastic 
body and the material was set as AISI 1045. The tool was set as a 
rigid body and the material was set as tungsten carbide steel. The me-
chanical characteristics of these materials were imported from the rich 
material library in DEFORM. Then, the J-C model was selected for 
the workpiece material model, and the benchmark parameters of J-C 
model are shown in Table 1. The number of meshes for the workpiece 

and tool were 40,000 
and 10,000, respectively. 
Considering the efficien-
cy of remeshing during 
calculation to reduce the 
time of the entire milling 
simulation calculation, 
the mesh type in the mod-
el was set to a tetrahedral 
mesh. And the mesh size 
could be set to 1/3 of feed 
rate per spindle speed 
[31,39], thus according 
to Table 3 the mesh size 
could be calculated to 
0.053 mm (400/2500/3 
= 0.053mm). Reasonable 
simulation speed and ac-

curacy was ensured by applying local refinement to the machined 
surface, and the refinement ratio was 0.01. After inspection, the maxi-
mum mesh size of the workpiece and the tool is less than 1/5 of the 
feed. Figure 4(a), (b) and (c) show the milling tool model, meshing 
refinement, and simulation running in DEFORM, respectively.  

For boundary conditions, the bottom of the workpiece was fixed in 
the three directions (X, Y, and Z), the entire surface of the workpiece 
and tool were selected for heat exchange with the environment, the 
three operational parameters (spindle speed, depth of cut, and feed 
rate) of cutting processing were set in according to actual conditions 
in Table 3. The number of simulation steps was set 24000, and the 
sampling interval was 8.33 × 10-5 s and the sampling time was 1 s. In 
modeling the tool/workpiece contact, the friction coefficient between 
the tool and the workpiece was 0.6 [10], and the thermal conductivity 
was 45 W·m-1·C-1 [11]. Finally, after simulation, the cutting force data 
was exported and saved in the post-processing.

Table 3. Experimental cutting parameters

Case Spindle Speed 
(rpm)

Depth of Cut 
(mm)

Feed Rate  
(mm/min)

1 2300 0.4 400

2 2300 0.6 500

3 2400 0.4 450

4 2400 0.5 500

5 2500 0.5 400

6 2500 0.6 450

7 2300 0.4 500

8 2300 0.6 400

Table 4. Tool wear classifications of the eight milling tools

             Category
    Case

1-st
[0, 0.3)

2-nd
[0.3, 0.6)

3-rd
[0.6, 0.9)

4-th
[0.9, 1.2)

5-th
[1.2, 1.5)

6-th
[1.5, 1.8)

7-th
≥1.8

Sample 
number

1 — 2 2 2 — 2 2 10

2 1 1 1 3 1 3 — 10

3 — 2 1 3 1 2 1 10

4 — 2 2 2 1 3 — 10

5 1 2 2 3 2 — — 10

6 — 2 2 2 1 1 2 10

7 2 2 3 1 2 — — 10

8 1 1 2 1 1 4 — 10

Fig. 3. Tool images indicative of different length of rake face wear (KB) values [46]: a) first milling stage, b) fifth milling stage, c) tenth milling stage

b) c)a)



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021376

3.3. Parameter optimization by orthogonal experiments
In this section,three levels of each parameter in Table 1 were set 

as 80%, 100% and 120% of the benchmark value (shown in Table 
5), and an orthogonal table of five factors and three levels (L18 (53)) 
was employed to conduct the orthogonal experiments, as shown in Ta-
ble 6. The operational parameters (speed, depth of cut, and feed rate) 

used in the orthogonal experiment were 2500 rpm, 0.6 mm, and 450 
mm/min, respectively. Therefore, the experimental data of the same 
parameters were selected to calculate the KL divergence and cosine 
similarity, and the comparison data is taken one second (12,000 data 
points) after the milling tool completely entered the workpiece. The 
KL divergence and cosine similarity results of the 18 cutting tests are 
shown in Table 6.

The KL divergence and cosine similarity results of each orthogonal 
experiment case were presented in Table 6, in which the values of KL 
divergence and cosine similarity are the average of three directions 
(X, Y and Z). By main effect analysis, the best parameter combination 
is A(2) B(1) n(2) m(2) C(2), as shown in Table 6, the corresponding 
average KL divergence is 2.6035, which is smaller than the other com-

Table 6. Orthogonal experiments of the J-C model parameters

No. A B n m C Average KL Average Cos(θ)

1 1 1 1 1 1 2.9240 0.6991

2 1 2 2 2 2 2.8078 0.7233

3 1 3 3 3 3 3.0946 0.6942

4 2 1 1 2 2 2.6832 0.7299

5 2 2 2 3 3 2.9804 0.7236

6 2 3 3 1 1 3.0403 0.7211

7 3 1 2 1 3 2.8987 0.6954

8 3 2 3 2 1 2.8236 0.7013

9 3 3 1 3 2 3.1400 0.7136

10 1 1 3 3 2 3.1034 0.7165

11 1 2 1 1 3 3.0441 0.6957

12 1 3 2 2 1 3.0547 0.7229

13 2 1 3 1 1 2.8985 0.7366

14 2 2 1 2 2 2.9507 0.7101

15 2 3 2 3 3 2.8640 0.7099

16 3 1 2 2 3 2.9140 0.6970

17 3 2 3 3 1 2.8981 0.6996

18 3 3 1 1 2 2.9098 0.6942

Average KL of the 1-st level 3.0048 2.9036 2.9420 2.9526 2.9399 —— ——

Average KL of the 2-nd level 2.9029 2.9175 2.9199 2.8723 2.9325 —— ——

Average KL of the 3-rd level 2.9307 3.0172 2.9764 3.0134 2.9660 —— ——

Benchmark 2 2 2 2 2 2.7516 0.7196

The optimal 2 1 2 2 2 2.6035 0.7389

Table 5. Factor level table

Level A B n m C

1 442.48 480.64 0.184 0.8 0.01072

2 553.1 600.8 0.23 1.0 0.0134

3 663.72 720.96 0.276 1.2 0.01608

Fig. 4. Simulation of end milling process: a) milling tool model, b) meshing and refinement, c) simulation running

b)

c)

a)
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binations, and the average cosine similarity values (= 0.7389) greater 
than 0.6. The simulated and measured time series data corresponding 
to the best parameter combination under normal tool condition are 
presented in Figure 5 in the X, Y, and Z directions. It can be seen that 
the simulated signals differ slightly from the measured signals.

Fig. 5. The time-domain comparison between measured and simulation sig-
nals

4. Result analysis

4.1.	 Simulation	signal	verification
The validity of the simulated samples were tested by comparing 1.0 

s (i.e., 12,000 sampling points) of the simulated and measured cutting 
force signals obtained for operational condition 6 under different tool 
wear categories. Figures 6-8 show the time series data and the cor-
responding frequency spectra of the simulated and measured signal 
in the X, Y, and Z directions under the 2-nd, 4-th and 10-th tool wear 
categories. It can be seen that, under these tool wear categories, the 
simulated signals differ slightly from the measured signals in terms 
of the amplitudes of the peaks in the frequency domain, while the 
frequency peak positions agree well.

Fig. 6. Comparison of the simulated and measured cutting force signals under 
the 2-nd tool wear category

 4.2. Sample augmentation
As shown in Figure 6, different tool wear states were simulated 

based on the optimal numerical simulation model according to the 
tool wear lengths and wear shapes obtained during the experiments, 
and the linear interpolation method was applied to achieve KB val-
ues less than the threshold for missing categories according to the 
observed tool wear value trends. Three examples of wear categories 

added based on the FEM model are presented in Fig. 6 for operational 
condition 6.

According to Table 4, the 1-st and 7-th wear categories were gener-
ally missing under the operational conditions considered. Therefore, 
we consider missing samples only for the 7-th category here owing to 
article length limitations. Cases 2, 4, 5, 7, and 8 were employed as the 
training dataset because all of these are missing the 7-th wear catego-
ry, and the remaining three cases 1, 3, and 6, which contain the 7-th 
category but not the 1-st category, were employed as the testing data-
set. Then, 12,000 data points (1 s) were selected for the simulated and 
measured samples of each category, which are evenly divided into 20 
groups. The optimal numerical simulation model model is employed 
to simulate the testing cases (Cases 1, 3, and 6) to increase the number 
of samples in the training dataset. Each simulated case contains 12 dif-
ferent tool KB samples involving all wear categories, and the sample 
sizes of the measured and simulated training sets were 900 (45×20) 
and 560 (28×20) not including the 1-st category, respectively. Accord-
ingly, we employed three separate datasets to train the AI classifiers, 
which included the measurement dataset composed of only measured 
samples, the simulation dataset composed of only simulated samples, 
and the measurement + simulation dataset composed of measured and 
simulated samples, with a total of 1460 (900+560) samples.

4.3.	 Classification	result	and	analysis
These feature parameters listed in Table 2 were calculated for the 

individual samples in the training and testing datasets, and employed 
as the input parameters for training and testing classifiers. Four com-
mon algorithms, SVM, RF, DT, and a generalized regression neural 
network (GRNN), were adopted to verify the generalized ability of 
the proposed method. Here, the SVM classifier selects the radial basis 
kernel function, and the penalty factor and kernel function radius are 
set to 3 and 1, respectively. The RF classifier was executed with the 
Randomforest-matlab open source toolbox developed by Abhishek 
Jaiantilal (https://github.com/ajaiantilal/ randomforest-matlab), and 
the number of decision trees was set to 500. The DT classifier was 
used the toolbox function ClassificationTree.fit in MATLAB R2016, 
and the parameters of ‘name’ and ‘value’ were selected as ‘model’ and 

Fig. 7. Comparison of the simulated and measured cutting force signals under 
the 4-th tool wear category

Fig. 8. Comparison of the simulated and measured cutting force signals under 
the 10-th tool wear category
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‘graph’, respectively. The value of SPREAD in the GRNN classifier 
was set to 0.1. 

Table 7 shows the classification accuracies of four classifiers with 
the testing dataset. It can be found from Table 7, that the average clas-
sification accuracy obtained by the classifiers based on the simula-

tion dataset is greater than that based on the measurement dataset by 
11.42%, although the sample size of the simulation datset is less than 
that of the measurement dataset. There are two reasons for this result, 
one is the simulation dataset makes up missing categories not occurred 
in experiments, the other is the cutting conditions corresponding to 
the simulation dataset are consistent with that to the testing dataset. In 
addition, the average classification accuracy obtained by the classifi-
ers based on the measurement + simulation dataset is greater than that 
based on the measurement dataset by 22.83%, and the classification 
accuracies obtained by the SVM, RF, and DT classifiers based on the 
measurement + simulation dataset are above 90%. Therefore, it can be 

considered that the proposed TCM method can improves significantly 
the classification accuracies of many classifiers.

The classification accuracy of each wear category obtained using 
the four classifiers trained using the three different training datasets 
are presented in Figures 10-13, respectively. We note from the figures 

Fig. 9. Artificially added wear categories obtained from the FEM model: a) second category, b) fourth category, c) seventh category

Fig. 10. Classification accuracy of each wear category using the SVM with 
three training datasets

Fig. 12. Classification accuracy of each wear category using the DT with 
three training datasets

Fig. 11. Classification accuracy of each wear category using the RF with 
three training datasets

Fig. 13. Classification accuracy of each wear category using the GRNN with 
three training datasets.

Table 7. Classification Accuracy of four classifiers with different samples

Training set Measure-
ment Simulation Measurement + Simu-

lation

SVM 68.67% 85.67% 91.33%

RF 73.50% 90.17% 93.83%

DT 70.00% 56.67% 90.00%

GRNN 54.67% 80.00% 83.00%

Average accuracy 66.71% 78.13% 89.54%

b) c)a)
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that the classification accuracy of the four classifiers trained with the 
measurement dataset is not high for most of the wear categories. In 
contrast, the classification accuracy of the four classifiers trained with 
the simulation dataset and the measurement + simulation dataset are 
generally much greater (except for wear category 3 in RF and wear 
category 4 in GRNN, which are lower).

5. Conclusion
This paper proposed a feasible TCM method for obtaining vari-

ous samples of tool wear condition by numerical simulation based on 
J-C model to overcome the problem of sample missing and sample 
insufficiency in real experiments. First, a numerical model based on 
Johnson-Cook model is established, and the model parameters are op-
timized through orthogonal experiment technology with the practical 
experiments, in which the Kullback- Leibler divergence and cosine 
similarity are used as the evaluation indexes. Second, samples under 
various tool wear categories are obtained by the optimized numerical 

model above to provide missing samples not present in the practical 
experiments and expand sample size. The effectiveness of the pro-
posed method is verified by its application in end milling TCM experi-
ments. The results indicate the classification accuracies of four classi-
fiers (SVM, RF, DT, and GRNN) can be improved significantly by the 
proposed TCM method, and we believe that the proposed method has 
similar effects on other AI classifiers. In addition, although this study 
is about tool wear condition monitoring approach for end milling, the 
proposed method is also applicable to other machining process.
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